
 
AFRL-RY-WP-TR-2019-0089 

 
 

 
 

 
DEEP LEARNING ARCHITECTURES FOR ROBUST 
CLASSIFICATION UNDER ADVERSARIAL NOISE 
 
 
Yaron Singer 

Harvard University 
 
 
 
AUGUST 2019 
Final Report 
 
 
 
 

 
Approved for public release; distribution is unlimited.  

See additional restrictions described on inside pages  
 

STINFO COPY 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
SENSORS DIRECTORATE 

WRIGHT-PATTERSON AIR FORCE BASE, OH  45433-7320 
AIR FORCE MATERIEL COMMAND 

UNITED STATES AIR FORCE



NOTICE AND SIGNATURE PAGE 
 
 
Using Government drawings, specifications, or other data included in this document for any 
purpose other than Government procurement does not in any way obligate the U.S. Government. 
The fact that the Government formulated or supplied the drawings, specifications, or other data 
does not license the holder or any other person or corporation; or convey any rights or permission 
to manufacture, use, or sell any patented invention that may relate to them.  
 
This report is the result of contracted fundamental research deemed exempt from public affairs 
security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and 
AFRL/CA policy clarification memorandum dated 16 Jan 09.  This report is available to the general 
public, including foreign nationals.  
 
Copies may be obtained from the Defense Technical Information Center (DTIC) 
(http://www.dtic.mil).   
 
AFRL-RY-WP-TR-2019-0089 HAS BEEN REVIEWED AND IS APPROVED FOR 
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 
 
 
 
 
  
ASHLEY M. DEMANGE TIMOTHY R. JOHNSON, Chief 
Program Manager Sensor Subsystems Branch 
Sensor Subsystems Branch Aerospace Components & Subsystems Division 
Aerospace Components & Subsystems Division  
 
 
 
 
 
 
JUSTIN W. CLEARY 
Deputy (Acting) 
Aerospace Components & Subsystems Division 
Sensors Directorate 
 
 
 
 
This report is published in the interest of scientific and technical information exchange, and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings. 
 
*Disseminated copies will show “//Signature//” stamped or typed above the signature  
 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information 
if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1.  REPORT DATE  (DD-MM-YY) 
August 2019 

2.  REPORT TYPE 
Final 

3.  DATES COVERED (From - To) 
15 February 2018 – 15 February 2019 

4.  TITLE AND SUBTITLE 
DEEP LEARNING ARCHITECTURES FOR ROBUST 
CLASSIFICATION UNDER ADVERSARIAL NOISE 

5a.  CONTRACT NUMBER 
FA8650-18-1-7811 

5b.  GRANT NUMBER 
5c.  PROGRAM ELEMENT NUMBER 

61101E 
6.  AUTHOR(S) 

Yaron Singer 
5d.  PROJECT NUMBER 

1000 
5e.  TASK NUMBER 

N/A 
5f.  WORK UNIT NUMBER 

Y1QT 
7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Harvard University 
Office for Sponsored Programs 
1033 Massachusetts Ave, 5th Floor 
Cambridge, MA 02138-5369 

8.  PERFORMING ORGANIZATION 
  REPORT NUMBER 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Air Force Research Laboratory 
Sensors Directorate 
Wright-Patterson Air Force Base, OH  45433-7320 
Air Force Materiel Command 
United States Air Force 

10.  SPONSORING/MONITORING AGENCY 
ACRONYM(S) 
AFRL/RYDR 

11.  SPONSORING/MONITORING AGENCY 
REPORT NUMBER(S) 
AFRL-RY-WP-TR-2019-0089 

12.  DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution is unlimited. 

13.  SUPPLEMENTARY NOTES 
This report is the result of contracted fundamental research deemed exempt from public affairs security and policy 
review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy clarification memorandum 
dated 16 Jan 09. This material is based on research sponsored by Air Force Research laboratory (AFRL) and the 
Defense Advanced Research Agency (DARPA) under agreement number FA8650-18-1-7811. The U.S. Government is 
authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation 
herein. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily 
representing the official policies of endorsements, either expressed or implied, of AFRL and DARPA or the U.S. 
Government. Report contains color. 

14.  ABSTRACT 
This report focuses on the problem of designing robust classifiers to images that are distorted by noise. The approach 
taken was robust optimization where the goal was to optimize in the worst case over a class of objective functions. A 
theoretical framework with strong guarantees was developed. In particular it was shown that given a classifier that has α 
accuracy over a finite number of attacks, one can develop a robust classifier that is an arbitrarily close to be an α 
approximation to the optimal robust classifier. These results were applied to robust neural network training and 
approach was evaluated experimentally on corrupted character classification. 

15.  SUBJECT TERMS 
deep neural networks, noise distortion, deep learning architectures  

16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION  
OF ABSTRACT: 

SAR 

18.  NUMBER 
OF PAGES 

      21 

19a.  NAME OF RESPONSIBLE PERSON (Monitor) 
a.  EPORT 
Unclassified 

b. ABSTRACT 
Unclassified 

c. THIS PAGE 
Unclassified 

Ashley DeMange 
19b.  TELEPHONE NUMBER (Include Area Code) 

N/A 
Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 



i 
Approved for public release; distribution is unlimited. 

Table of Contents 
 
Section               Page 
 
List of Figures ................................................................................................................................. ii 
List of Tables .................................................................................................................................. ii 
1. OVERVIEW ............................................................................................................................... 1 

1.1 Deliverables ........................................................................................................................ 2 
2. MILESTONES ........................................................................................................................... 3 

2.1 Milestone 1:  DNN Architecture for every Noise Type ...................................................... 3 
2.1.1 Corruption Set Details ..................................................................................................... 3 
2.1.2 Neural Network Results ................................................................................................... 4 

2.2 Milestone 2:  Algorithm for Max-Min Robust Guarantees ................................................ 4 
2.2.1 Theorem ........................................................................................................................... 5 

2.3 Milestone 3:  DNN Architecture or Oracle and Boosting .................................................. 6 
2.3.1 Robust Classification with Neural Networks ................................................................... 7 

2.4 Milestone 4:  Classification from Robust Guarantees ........................................................ 8 
2.4.1 Theorem ........................................................................................................................... 8 

2.5 Milestone 5:  Hybrid and Composite Methods ................................................................... 9 
2.5.1 Hybrid Method ................................................................................................................. 9 
2.5.2 Composite Method ......................................................................................................... 10 

2.6 Milestone 6:  Experiments ................................................................................................ 11 
2.6.1 Neural Network Results ................................................................................................. 13 
2.6.2 Analysis of Multiplicative Weights Update ................................................................... 14 

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS ................................................ 16 
 



ii 
Approved for public release; distribution is unlimited. 

List of Figures 
 
Figure               Page 
 
Figure 1:  Example of Misclassification of Bus via Noise from Szegedy et al .............................. 1 
Figure 2:  The Stochastic Oracle, Training on a Sample of Images Drawn from the  
Mixture of Corruptions ................................................................................................................... 7 
Figure 3:  Sample MNIST Image with each of the Corruptions applied to it ................................. 7 
Figure 4:  First Interpretation of Bayesian Oracle, Training on a Sample of Images  
Drawn from the Mixture of Corruptions ......................................................................................... 9 
Figure 5:  Sample MNIST Image with each of the Corruptions applied to it ............................... 10 
Figure 6:  Second Interpretation of Bayesian Oracle .................................................................... 10 
Figure 7:  Comparison of methods, showing mean of 10 independent runs and a 95%  
confidence band ............................................................................................................................ 13 
Figure 8:  Comparison of Individual Bottleneck Loss between using γ = 0.5 vs. γ = 0.1  
in the Multiplicative Weights update, for both the Hybrid and Composite Methods ................... 14 
Figure 9:  Amount that the Distribution over Corruption Types w changes between  
Iteration t & t + 1 Decays Rapidly as t Increases and the Distribution Stabilizes (left)  
and Difference between γ = 0.1 & γ = 0.5 in the Amount that w changes between  
Iterations (right) ............................................................................................................................ 15 
 
 

List of Tables 
 
Table                Page 
 
Table 1.  Outline of Deliverables .................................................................................................... 2 
Table 2.  Individual Bottleneck Loss Results on all four Corruption Sets ..................................... 4 
Table 3.  Individual Bottleneck Loss Results on all four Corruption Sets ................................... 13 
 
 



1 
Approved for public release; distribution is unlimited. 

1. Overview 

In recent years, classification using deep neural networks (DNNs) has produced state-of-the-art 
performance on visual classification problems, achieving near-human-level performance on 
image recognition tasks. Despite their empirical success, however, there are many open 
questions related to our theoretical and intuitive understanding of deep learning methods. 
 
One important open question relates to the robustness of deep neural networks to noise. In a 
recent paper (https://arxiv.org/pdf/1312.6199.pdf), Szegedy et al. show that standard deep 
learning classifiers are extremely sensitive to noise. In particular, the authors show that one can 
take an image which is correctly classified by a DNN, and make the same image become 
completely misclassified by perturbing the pixels of the image in a manner that is not detectable 
to the human eye (see Figure 1). In a world which develops an ever-growing dependence on 
automatic classification using neural networks, with applications ranging from self-driving cars 
to face recognition, such sensitivity to noise can have dire consequences. 
 

 
Figure 1:  Example of Misclassification of Bus via Noise from Szegedy et al 

The image on the left is a bus, correctly classified by a standard DNN; the figure in the middle 
depicts the perturbation of pixels added to the image on the left; the image on the right is the 
image of the bus after noise has been applied, where the DNN classified the bus as an ostrich. 

 
Towards noise robust DNNs. Motivated by this problem, the goal of this project was to design 
deep learning methods that are probably robust to adversarial noise. This project combined 
modeling, mathematical, and experimental challenges. At a high level, the modeling challenge is 
that we are interested in providing provable guarantees for the methods we suggest. The problem 
however, is that training a deep learning classifier requires solving an intractable optimization 
problem. We used robust and combinatorial optimization and overcame various interesting 
theoretical challenges that arose when designing these algorithms. Most importantly, we 
developed algorithms that work well in practice. This required designing architectures and 
training large-scale DNNs. 

https://arxiv.org/pdf/1312.6199.pdf
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1.1 Deliverables 
 
The deliverables for this project are outlined below. We refer to the Modified National Institute 
of Standards and Technology (MNIST) handwritten digits data set containing 55000 training 
images. 

Table 1.  Outline of Deliverables 
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2. Milestones 

2.1 Milestone 1:  DNN Architecture for every Noise Type 
 
If we have access to the noise generator and train a classifier on noisy images, the classifier will 
classify images well. Thus, in this case, we can imagine that we have a set of noise types  
N1, . . . , Nk and for each i ∈ [k] we are able to find a set of weights xi ∈ ℝn s.t. the classification 
accuracy fi(xi) is at least some α, where α ∈ [0, 1]1. If we know which noise type the adversary 
uses we can trivially train a classifier on that noise type and obtain accuracy of α. The problem is 
that we do not know which noise type the adversary uses, and hence without constructing a 
robust classifier, even if an adversary chooses a noise type at random, our expected accuracy is 
α/k, which is poor since we think of k as a large number that tends to infinity. 
___________________________________________ 
1For example, for most noise distributions we tested, simple neural network architectures are able to 
produce solutions s.t. their accuracy is over 90%. 
 
Training with Adversarial Noise 
In general, we can imagine a space X ∈ ℝn to optimize over, and a collection of k potential 
objective functions that might arise: F = {f1, . . . , fk}. For each function fi ∈ F we assume that we 
do not know how to optimize fi exactly, but rather know how to obtain a solution  
xi ∈ ℝn s.t. (f(xi) ≥ αfi (xi*), where xi* is the optimal solution, i.e., xi* ∈ arg maxx fi (x). In our 
context, each fi measures the accuracy that a DNN can achieve when trained with noise 
generator i ∈ [k]. Since we may not be able to train the DNN to have perfect or even optimal 
accuracy, we resort to this black-box model: if one assumes that the DNN can correctly classify 
at least α fraction of the inputs, our goal is to return a robust classifier whose accuracy is a 
function of α. Indeed, in this report we show how to design such a robust classifier whose 
accuracy is arbitrarily close to an α approximation of the optimal robust classifier. Observe that 
by using this black-box approach where our only assumption about the oracle is that it has α 
accuracy, we are able to circumvent the issue that there are no guarantees for training DNNs. 
 
2.1.1 Corruption Set Details 
 
Background Corruption Set consists of images with (i) an unperturbed white background–the 
original images, (ii) a light gray tint background, (iii) a gradient background, (iv) and a 
checkerboard background. 
Shrink Corruption Set consists of images with (i) no distortion–the original images, (ii) a 25% 
shrinkage along the horizontal axis, (iii) a 25% shrinkage along the vertical axis, and (iv) a 25% 
shrinkage in both axes. 
Pixel Corruption Set consists of images that (i) remain unaltered–the original images, (ii) have 
Unif[-0.15, -0.05] perturbation added i.i.d. to each pixel, (iii) have Unif[-0.05, 0.05] perturbation 
added i.i.d. to each pixel, and (iv) have Unif[0.05, 0.15] perturbation added i.i.d. to each pixel. 
Mixed Corruption Set consists of images that (i) remain unaltered–the original images, and one 
corruption type from each of the previous three corruption sets (which were selected at random), 
namely that with (ii) the checkerboard background, (iii) 25% shrinkage in both axes, and  
(iv) i.i.d. Unif[-0.15, -0.05] perturbation. 
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2.1.2 Neural Network Results 
 
We use the MNIST handwritten digits data set containing 55000 training images. Table 2 shows 
the individual bottleneck loss results. Mean is over 10 independent runs and a 95%confidence 
interval for the mean with T = 50 on all four Corruption Sets. Composite Method outperforms 
Hybrid Method, and both outperform baselines, with such differences being statistically 
significant. 
 

Table 2.  Individual Bottleneck Loss Results on all four Corruption Sets 

 
 
Code. In the submitted code we include a design of a DNN implemented in TensorFlow that for 
any noise type. 
 
2.2 Milestone 2:  Algorithm for Max-Min Robust Guarantees 
 
Our goal is to find a solution x ∈ X that achieves good quality for all fi. In particular, we seek the 
max-min optimal solution: 
 

(1) 
 
We are given access to an oracle which computes an approximate optimum for a distribution 
over objectives. We call the oracle an α-approximate distributional oracle. Specifically, given 
any distribution D on F, the oracle M(D) computes an α-approximate solution x* = M(D) to the 
distributional problem, i.e.: 
 

(2) 
 
 
 
Given access to an α-approximate distributional oracle, we seek to find a distribution P over 
solutions X such that for any realization of f ∈ F, the expected value of f (in expectation over the 
randomized solutions in P) is an approximation to the optimal value 𝜏𝜏. 
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We first show that, given access to an α-approximate stochastic oracle, it is possible to 
efficiently implement improper α-approximate robust optimization, subject to a vanishing 
additive loss term. 
 
2.2.1 Theorem 
 
Given access to an α-approximate stochastic oracle, Algorithm 1 with η =              computes a 
distribution P over solutions, defined as a uniform distribution over a 
______________________________________________________________________________ 
Algorithm 1.  Oracle Efficient Improper Robust Optimization 
 
Input: Objectives ℒ = {L1,…, Lm}, Approximate stochastic oracle M, parameters T,η for each 
time step t ∈ [T] do  
 
    Set 
 

(3) 
 
    Set xt = M(wt) 
end for 
Output: the uniform distribution over {x1,…, xT} 
______________________________________________________________________________ 
 
set {x1,…, xT}, so that 
 

(4) 
 
 
Moreover, for any η > 0, the distribution P computed by Algorithm 1 satisfies: 
 

(5) 
 
 
Proof. We begin by establishing (4), and will show how to extend our analysis to yield (5) at the 
end of the proof. We can interpret Algorithm 1 in the following way: We define a zero-sum 
game between a learner and an adversary. The learner’s action set is equal to X and the 
adversary’s action set is equal to [m]. The loss of the learner when he picks x ∈ X and the 
adversary picks i ∈ [m] is defined as Li(x). The corresponding payoff of the adversary is Li(x). 
 
We will run no-regret dynamics on this zero-sum game, where at every iteration t = 1, . . . , T , 
the adversary will pick a distribution over functions and subsequently the learner picks a solution 
xt. For simpler notation we will denote with wt the probability density function on [m] associated 
with the distribution of the adversary. That is, wt[i] is the probability of picking function Li ∈ ℒ. 
The adversary picks a distribution wt based on some arbitrary no-regret learning algorithm on the 
m actions in ℒ. For concreteness consider the case where the adversary picks a distribution based 
on the multiplicative weight updates algorithm, i.e., 
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(6) 

 
 
Subsequently the learner picks a solution xt that is the output of the α-approximate stochastic 
oracle on the distribution selected by the adversary at time-step t. That is, 
 

(7) 
 
Write ∈(T) =                  . By the guarantees of the no-regret algorithm for the adversary, we have 
that 
 
 

(8) 
 
 
Combining the above with the guarantee of the stochastic oracle we have 
 

 
 
Thus, if we define with P to be the uniform distribution over {x1,…, xT}, then we have derived 
 

(9) 
 
as required. 
 
2.3 Milestone 3:  DNN Architecture or Oracle and Boosting 
 
In order to apply the robust optimization algorithm we need to construct a neural network 
architecture that facilitates it. In each iteration t, such an architecture receives a distribution over 
corruption types wt = [wt[1], ..., wt[m]] and produces a set of weights θt. 
 
We take each training data image (Figure 2) and perturb it by exactly one corruption, with 
corruption i being selected with probability wt[i]. Then apply mini-batch gradient descent, 
picking mini-batches from the perturbed data set, to train a classifier θt. Note that the resulting 
classifier will take into account corruption i more when wt[i] is larger. 
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Figure 2:  The Stochastic Oracle, Training on a Sample of Images Drawn from the Mixture 

of Corruptions 
 
2.3.1 Robust Classification with Neural Networks 
 
We have a data set Z of pairs (z, y) of an image z ∈ Ƶ and label y ∈ У that can be corrupted in m 
different ways which produces data sets Z1, . . . , Zm. The hypothesis space H is the set of all 
neural nets of some fixed architecture and for each possible assignment of weights. We denote 
each such hypothesis with h(·; θ) : Ƶ → У for θ ∈ Rd, with d being the number of parameters 
(weights) of the neural net. If we let Di be the uniform distribution over each corrupted data set 
Zi, then we are interested in minimizing the empirical cross-entropy (aka multinomial logistic) 
loss in the worst case over these different distributions Di. The latter is a special case of our 
robust statistical learning framework from Section 2.4. 
 

 
Figure 3:  Sample MNIST Image with each of the Corruptions applied to it 

Background Corruption Set & Shrink Corruption Set (top) and Pixel Corruption Set & Mixed 
Corruption Set (bottom) 

 
Training a neural network is a non-convex optimization problem and we have no guarantees on 
its performance. We instead assume that for any given distribution D over pairs (z, y) of images 
and labels and for any loss function ℓ(h(z; θ), y), training a neural net with stochastic gradient 
descent run on images drawn from D can achieve an α approximation to the optimal expected 
loss, i.e. minθ∈Rd E(z,y)~D [ℓ(h(z; θ), y)]. Notice that this implies an α-approximate stochastic 
oracle for the corrupted dataset robust training problem: for any distribution w over the different 
corruptions [m], the stochastic oracle asks to give an α-approximation to the minimization 
problem: 
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(10) 

 
The latter is simply another expected loss problem with distribution over images being the 
mixture distribution defined by first drawing a corruption index i from w and then drawing a 
corrupted image from distribution Di. Hence, our oracle assumption implies that Stochastic 
Gradient Descent (SGD) on this mixture is an α-approximation. By linearity of expectation, an 
alternative way of viewing the stochastic oracle problem is that we are training a neural net on 
the original distribution of images, but with loss function being the weighted combination of loss 
functions Σmi=1 w[i] · ℓ(h(ci(z); θ), y), where ci(z) is the i-th corrupted version of image z. In our 
experiments we implemented both of these interpretations of the stochastic oracle when 
designing our neural network training scheme. 
 
Finally, because we use the cross-entropy loss, which is convex in the prediction of the neural 
net, we can also apply Theorem 2.4.1 to get that the ensemble neural net, which takes the 
average of the predictions of the neural nets created at each iteration of the robust optimization, 
will also achieve good worst-case loss (we refer to this as Ensemble Bottleneck Loss). 
 
Code. The code for the DNN is included with this report. 
 
2.4 Milestone 4:  Classification from Robust Guarantees 
 
In the previous milestone we defined the algorithm for robust optimization. The performance of 
the algorithm was proven and we now apply our main theorem to statistical learning. Consider 
regression or classification settings where data points are pairs (z, y), z ∈ Ƶ is a vector of features, 
and y ∈ У is the dependent variable. The solution space X is then a space of hypotheses H, with 
each h ∈ H a function from Ƶ to У We also assume that У is a convex subset of a finite-
dimensional vector space. 
 
We are given a set of loss functions ℒ = {L1, . . . , Lm}, where each Li ∈ ℒ is a functional  
Li : H → [0, 1]. Theorem 2.2.1 implies that, given an α -approximate stochastic optimization 
oracle, we can compute a distribution over T hypotheses from H that achieves an α-approximate 
minimax guarantee. If the loss functionals are convex over hypotheses, then we can compute a 
single ensemble hypothesis h* (possibly from a larger space of hypotheses, if H is non-convex) 
that achieves this guarantee. We state this as Theorem 2.4.1. 
 
2.4.1 Theorem 
 
Suppose that ℒ = {L1, . . . , Lm}, are convex functionals. Then ensemble hypothesis                            
where {h1, . . . , hT} are the hypotheses output by Algorithm 1 given an α-approximate stochastic 
oracle, satisfies 
 
 

(11) 
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We emphasize that the convexity condition in Theorem 2.4.1 is over the class of hypotheses, 
rather than over features or any natural parameterization of H (such as weights in a neural 
network). This is a mild condition that applies to many examples in statistical learning theory. 
For instance, consider the case where each loss Li(h) is the expected value of some ex-post loss 
function ℓi(h(z), y) given a distribution Di over Z × Y: 
 

(12) 
 
In this case, it is enough for the function ℓi(·, ·) to be convex with respect to its first argument 
(i.e., the predicted dependent variable). This is satisfied by most loss functions used in machine 
learning, such as multinomial logistic loss (cross-entropy loss) ℓ(ŷ, y) = -Σc∈[k]yclog(ŷc) from 
multi-class classification or squared loss ℓ(ŷ, y) = || ŷ - y ||2 as used in regression. For all these 
settings, Theorem 2.4.1 provides a tool for improper robust learning, where the final hypothesis 
h* is an ensemble of T base hypotheses from H. Again, the under-lying optimization problem 
can be arbitrarily non-convex in the natural parameters of the hypothesis space; in Section 2.3.1 
we will show how to apply this approach to robust training of neural networks, where the 
stochastic oracle is simply a standard network training method. For neural networks, the fact that 
we achieve improper learning (as opposed to standard learning) corresponds to training a neural 
network with a single extra layer relative to the networks generated by the oracle. 
 
2.5 Milestone 5:  Hybrid and Composite Methods 
 
2.5.1 Hybrid Method 
 
In order to apply the robust optimization algorithm we need to construct a neural network 
architecture that facilitates it. In each iteration t, such an architecture receives a distribution over 
corruption types wt = [wt[1], ..., wt[m]] and produces a set of weights θt. 
 

 
Figure 4:  First Interpretation of Bayesian Oracle, Training on a Sample of Images Drawn 

from the Mixture of Corruptions 
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In the Hybrid Method, our first oracle, we take each training data image and perturb it by exactly 
one corruption, with corruption i being selected with probability wt[i]. Then apply mini-batch 
gradient descent, picking mini-batches from the perturbed data set, to train a classifier θt. Note 
that the resulting classifier will take into account corruption i more when wt[i] is larger. 
 

 
Figure 5:  Sample MNIST Image with each of the Corruptions applied to it 

Background Corruption Set & Shrink Corruption Set (top). Pixel Corruption Set & Mixed 
Corruption Set (bottom) 

 
2.5.2 Composite Method 
 
In the Composite Method, at each iteration, we use m copies of the training data, where copy i 
has Corruption Type i applied to all training images. The new neural network architecture has m 
sub-networks, each taking in one of the m training data copies as input. All sub-networks share 
the same set of neural network weights. During a step of neural network training, a mini-batch is 
selected from the original training image set, and the corresponding images in each of the m 
training set copies are used to compute weighted average of the losses Σmi=1 wt[i]Losst,i, which is 
then used to train the weights. 
 

 
Figure 6:  Second Interpretation of Bayesian Oracle 

By creating m coupled instantiations of the net architecture (one for each corruption type), with 
the i-th instance taking as input the image corrupted with the i-th corruption and then defining 

the loss as the convex combination of the losses from each instance. 
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2.6 Milestone 6:  Experiments 
 
The purpose of our robust optimization framework is classification with neural networks for 
corrupted or perturbed datasets. We have a data set Z of pairs (z, y) of an image z ∈ Ƶ and label  
y ∈ У that can be corrupted in m different ways which produces data sets Z1, . . . , Zm. The 
hypothesis space H is the set of all neural nets of some fixed architecture and for each possible 
assignment of weights. We denote each such hypothesis with h(·; θ) : Ƶ → У for θ ∈ Rd, with d 
being the number of parameters (weights) of the neural net. If we let Di be the uniform 
distribution over each corrupted data set Zi, then we are interested in minimizing the empirical 
cross-entropy (aka multinomial logistic) loss in the worst case over these different distributions 
Di. The latter is a special case of our robust statistical learning framework from Section 2.4. 
 
Training a neural network is a non-convex optimization problem and we have no guarantees on 
its performance. We instead assume that for any given distribution D over pairs (z, y) of images 
and labels and for any loss function ℓ(h(z; θ), y), training a neural net with stochastic gradient 
descent run on images drawn from D can achieve an α approximation to the optimal expected 
loss, i.e. minθ∈Rd E(z,y)~D [ℓ(h(z; θ), y)]. Notice that this implies an α-approximate Bayesian 
Oracle for the corrupted dataset robust training problem: for any distribution w over the different 
corruptions [m], the Bayesian oracle asks to give an α-approximation to the minimization 
problem: 
 

(13) 
 
 
The latter is simply another expected loss problem with distribution over images being the 
mixture distribution defined by first drawing a corruption index i from w and then drawing a 
corrupted image from distribution Di. Hence, our oracle assumption implies that SGD on this 
mixture is an α-approximation. By linearity of expectation, an alternative way of viewing the 
Bayesian oracle problem is that we are training a neural net on the original distribution of 
images, but with loss function being the weighted combination of loss functions 
Σmi=1 w[i] · ℓ(h(ci(z); θ), y), where ci(z) is the i-th corrupted version of image z. In our 
experiments we implemented both of these interpretations of the Bayesian oracle, which we call 
the Hybrid Method and Composite Method, respectively, when designing our neural network 
training scheme. Finally, because we use the cross-entropy loss, which is convex in the 
prediction of the neural net, we can also apply Theorem 2.4.1 to get that the ensemble neural net, 
which takes the average of the predictions of the neural nets created at each iteration of the 
robust optimization, will also achieve good worst-case loss (we refer to this as Ensemble 
Bottleneck Loss). 
 
Experiment Setup. We use the MNIST handwritten digits data set containing 55000 training 
images, 5000 validation images, and 10000 test images, each image being a 28 × 28 pixel 
grayscale image. The intensities of these 576 pixels (ranging from 0 to 1) are used as input to a 
neural network that has 1024 nodes in its one hidden layer. The output layer uses the softmax 
function to give a distribution over digits 0 to 9. The activation function is a Rectified Linear 
Unit (ReLU) and the network is trained using Gradient Descent with learning parameter 0.5 
through 500 iterations of mini-batches of size 100. 
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In general, the corruptions can be any black-box corruption of the image. In our experiments, we 
consider four types of corruption (m = 4): 
 

• Background Corruption Set consists of images with (i) an unperturbed white 
background – the original images, (ii) a light gray tint background, (iii) a gradient 
background, (iv) and a checkerboard background. 

• Shrink Corruption Set consists of images with (i) no distortion – the original images, 
(ii) a 25% shrinkage along the horizontal axis, (iii) a 25% shrinkage along the vertical 
axis, and (iv) a 25% shrinkage in both axes. 

• Pixel Corruption Set consists of images that (i) remain unaltered – the original images, 
(ii) have Unif[-0.15, -0.05] perturbation added i.i.d. to each pixel, (iii) have Unif[-0.05, 
0.05] perturbation added i.i.d. to each pixel, and (iv) have Unif[0.05, 0.15] perturbation 
added i.i.d. to each pixel. 

• Mixed Corruption Set consists of images that (i) remain unaltered–the original images, 
and one corruption type from each of the previous three corruption sets (which were 
selected at random), namely that with (ii) the checkerboard background, (iii) 
25%shrinkage in both axes, and (iv) i.i.d. Unif[-0.15, -0.05] perturbation. 

 
Baselines. We consider three baselines: (i) Individual Corruption: for each corruption type  
i ∈ [m], we construct an oracle that trains a neural network using the training data perturbed by 
corruption i, and then returns the trained network weights as θt, for every t = 1, . . . , T. This 
gives m baselines, one for each corruption type; (ii) Even Split: this baseline alternates between 
training with different corruption types between iterations. In particular, call the previous m 
baseline oracles O1, ..., Om. Then this new baseline oracle will produce θt with Oi+1, where i = t 
mod m, for every t = 1, ..., T; (iii) Uniform Distribution: This more advanced baseline runs the 
robust optimization scheme with the Hybrid Method, but without the distribution updates. 
Instead, the distribution over corruption types is fixed as the discrete uniform                    , over 
all T iterations. This allows us to check if the multiplicative weight updates in the robust 
optimization algorithm are providing benefit. 
 
Results. The Hybrid and Composite Methods produce results far superior to all three baseline 
types, with differences both substantial in magnitude and statistically significant. The more 
sophisticated Composite Method outperforms the Hybrid Method. Increasing T improves 
performance, but with diminishing returns – largely because for sufficiently large T, the 
distribution over corruption types has moved from the initial uniform distribution to some more 
optimal stable distribution. All these effects are consistent across the 4 different corruption sets 
tested. The Ensemble Bottleneck Loss is empirically much smaller than Individual Bottleneck 
Loss. For the best performing algorithm, the Composite Method, the mean Ensemble Bottleneck 
Loss (mean Individual Bottleneck Loss) with T = 50 was 0.34 (1.31) for Background Set, 0.28 
(1.30) for Shrink Set, 0.19 (1.25) for Pixel Set, and 0.33 (1.25) for Mixed Set. Thus combining 
the T classifiers obtained from robust optimization is practical for making predictions on new 
data. 
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Figure 7:  Comparison of methods, showing mean of 10 independent runs and a 95% 

confidence band 
 
The criterion is Individual Bottleneck Loss: min[m] Eθ~P [ℓ(h(z; θ), y)], where P is uniform over 
all solutions θi for that method. Baselines (i) and (ii) are not shown as they produce significantly 
higher loss. 
 
2.6.1 Neural Network Results 
 
Table 3 shows the individual bottleneck loss results (mean over 10 independent runs and a 95% 
confidence interval for the mean) with T = 50 on all four Corruption Sets. Composite Method 
outperforms Hybrid Method, and both outperform baselines, with such differences being 
statistically significant. 
 

Table 3.  Individual Bottleneck Loss Results on all four Corruption Sets 
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2.6.2 Analysis of Multiplicative Weights Update 
 
Consider the robust optimization algorithm using the Hybrid and Composite Methods, but 
parameterizing η as  η = c · T-γ (for constant c =            ) to alter the multiplicative weights 
 

update formula. In this project, we have been using                                           . Lower values of 
γ leads to larger changes in the distribution over corruption types between robust optimization 
iterations. Here we rerun our experiments from Section 2.3.1 using γ = 0.1 (see Figure 8); we did 
not tune γ – the only values of γ tested were 0.1 and 0.5.2 
_____________________________ 
2A possible future step would be to use cross-validation to tune γ or design an adaptive parameter 
algorithm for γ. 
 

 
Figure 8:  Comparison of Individual Bottleneck Loss between using γ = 0.5 vs. γ = 0.1 in the 

Multiplicative Weights update, for both the Hybrid and Composite Methods 
The γ = 0.1 setting yields lower loss. 

 
The improved performance with γ = 0.1 compared to γ = 0.5 is related to an important property 
of our robust optimization algorithm in practice – namely that w stabilizes for sufficiently large 
T. Over the course of iterations of the algorithm, w moves from the initial discrete uniform 
distribution to some optimal stable distribution, where the stable distribution is consistent across 
independent runs. The γ = 0.1 setting yields to better Individual Bottleneck Loss than the γ = 0.5 
setting for finite T because it converges more rapidly to the stable distribution. 
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The left plot in Figure 9 shows 16 time series, corresponding to results for each combination of 
({Hybrid, Composite},{γ = 0.5, = γ 0.1},{Background, Shrink, Pixel, Mixed}), using the mean 
over 10 runs. The right plot shows the difference between pairs of time series from the previous 
figure (thus there are 16/2 = 8 times series shown). Values are positive for small t and near 0 for 
larger t, showing that the γ = 0.1 setting yields faster changes in w initially, thereby allowing w 
to more quickly approach the stable distribution. 
 

 
Figure 9:  Amount that the Distribution over Corruption Types w changes between 

Iteration t & t + 1 Decays Rapidly as t Increases and the Distribution Stabilizes (left) and 
Difference between γ = 0.1 & γ = 0.5 in the Amount that w changes between Iterations 

(right) 
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List of Abbreviations, Acronyms, and Symbols 

ACRONYM DESCRIPTION 
AFRL Air Force Research Laboratory 
DNN Deep Neural Network 
MNIST Modified National Institute of Standards and Technology 
ReLU Rectified Linear Unit 
SGD Stochastic Gradient Descent 
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